Recursive Algorithm of Evaluating Vertex-Type
Feynman Integrals

A. I. Davydychev *

Instituut-Lorentz, University of Leiden,
P.O.B. 9506, 2300 RA Leiden, The Netherlands

and

Institute for Nuclear Physics, Moscow State University,
119899, Moscow, Russia †

January 1992

Abstract

An algorithm of evaluating vertex-type loop integrals is considered. It is based on applying the integration-by-parts technique. As an example, a class of massless integrals corresponding to triangle diagrams is considered. The presented method can be also applied to loop diagrams with larger number of external lines as well as to integrals with massive denominators.

* Electronic mail address: DAVYD@COMPNET.NPIMS.U.MSK.SU
† Permanent address
1 Introduction

There are many important problems in contemporary elementary particles physics which require to develop effective methods and algorithms of evaluating Feynman loop diagrams. In particular, we mention the calculation of radiative corrections to various processes of elementary particles interaction, examination of Green functions behaviour, studying coefficient functions in operator expansions, renormalization group analysis of \(\beta \)-functions, etc. Many appropriate references can be found, e.g., in reviews [1] -[4]. It should be noted that, up to the present time, the greatest success was achieved in calculating various massless propagator-type loop diagrams. At the same time, the vertex-type diagrams (with three or more external lines) are also very important for studying many problems.

In realistic calculations we are often confronted with the necessity of evaluating Feynman integrals with different powers of denominators corresponding to the propagators of "internal" particles. For example, such integrals occur in the following cases:

(i) when we deal with vector particles in covariant-type gauges (with the exception of the Feynman gauge);
(ii) when some of external momenta of the diagram vanish;
(iii) when we differentiate the diagram with respect to the external momenta or masses (for example, when we use the sum rules method);
(iv) when we examine the compatibility of power-like solutions with loop equations for Green functions (e.g., when we study whether the \(1/k^4 \) infrared behaviour of gluon propagator is consistent with the Schwinger-Dyson equations for the propagator and for the vertex; see also the review [5]);
(v) when we use the technique [6] to reduce tensor integrals to scalar ones; etc.

The present paper is devoted to examination of some problems of evaluating vertex-type integrals. As an example, we regard a class of vertex-type integrals corresponding to "triangle" massless Feynman diagrams. In Section 2 we present some results for these integrals obtained by use of the Mellin-Barnes contour integral representation and Feynman parameters. In Section 3 we consider the recursive algorithm of calculating vertex-type integrals with different integer powers of denominators. This algorithm is based on using the integration-by-parts technique [7]. In Section 4 we formulate the main results and discuss the application of the method to more complicated integrals.

2 Some results for triangle massless diagrams

Let us consider the massless triangle diagram (see Figure 1) with arbitrary external momenta \(p_1, p_2 \) and \(p_3 \) \((p_1 + p_2 + p_3 = 0) \). The corresponding Feynman integral is of the following form:

\[
J(\nu_1, \nu_2, \nu_3) \equiv \int \frac{d^n k}{((q_1 + k)^2)^{\nu_1} ((q_2 + k)^2)^{\nu_2} ((q_3 + k)^2)^{\nu_3}}
\]

(2.1)

where \(n \) is the space-time dimension (in the framework of dimensional regularization [8]), and \(\nu_i \) \((i = 1, 2, 3)\) are the powers of denominators (or indices of the lines). As a
Fig. 1. The arrangement of momenta in triangle diagram.

rule, we shall put \(n = 4 - 2\varepsilon \) \((\varepsilon \to 0)\). Nevertheless, the algorithm considered below can be applied to any values of \(n \). In formula (2.1) it is understood that we use the "causal" prescription for singularities in the pseudo-Euclidean space: \(1/((q + k)^2)^{\nu} \leftrightarrow 1/((q + k)^2 + i0)^{\nu} \). As a rule, we shall consider that the indices \(\nu_i \) are integer. We also note that integrals (2.1) are symmetric with respect to the permutations of \((p_1, \nu_1), (p_2, \nu_2), (p_3, \nu_3)\).

If one of the indices \(\nu_i \) vanishes then the integral (2.1) can be expressed through the well-known one-loop two-point integrals \(I(\nu, \nu'|p) \) (\(p \) is the external momentum):

\[
\begin{align*}
J(\nu_1, \nu_2, 0) &= I(\nu_1, \nu_2|p_3) = \pi^{n/2}i^{1-n}G(\nu_1, \nu_2)(p_3^2)^{n/2-\nu_1-\nu_2}, \\
J(\nu_1, 0, \nu_3) &= I(\nu_1, \nu_3|p_2) = \pi^{n/2}i^{1-n}G(\nu_1, \nu_3)(p_2^2)^{n/2-\nu_1-\nu_3}, \\
J(0, \nu_2, \nu_3) &= I(\nu_2, \nu_3|p_1) = \pi^{n/2}i^{1-n}G(\nu_2, \nu_3)(p_1^2)^{n/2-\nu_2-\nu_3},
\end{align*}
\]

where

\[
G(\nu, \nu') = G(\nu', \nu) = \frac{\Gamma(n/2-\nu)\Gamma(n/2-\nu')\Gamma(\nu+\nu'-n/2)}{\Gamma(\nu)\Gamma(\nu')\Gamma(n-\nu-\nu')}. \quad (2.3)
\]

It can also be noted that if one of the indices \(\nu_1, \nu_2, \nu_3 \) is negative then this integral also can be reduced to two-point results (2.2). Moreover, if two or three indices \(\nu_i \) are non-positive integers then these integrals correspond to "tadpole" diagrams and are equal to zero (in the framework of dimensional regularization; see also the review [9]). Thus, it is the most interesting problem to study the region where all \(\nu_i \) are positive. In this case we shall consider the results (2.2) as "boundary" integrals.

In contrast to propagator-type integrals (2.2) with a simple power-like momentum behaviour, in general the integrals (2.1) depend on three momentum invariants \(p_1^2, p_2^2 \) and \(p_3^2 \). One can construct from these momenta squared two dimensionless variables,
for example:

\[x \equiv \frac{p_2^2}{p_3^2} \quad \text{and} \quad y \equiv \frac{p_2^2}{p_3^2}. \quad (2.4) \]

Here we are compelled to use one of the invariants, \(p_3^2 \), as a dimensionless-making parameter since we have no other massive parameters in the massless case. For arbitrary values of \(\nu_1, \nu_2, \nu_3 \) and \(n \) one can derive the following two-fold Mellin-Barnes representation [10]:

\[
J(\nu_1, \nu_2, \nu_3) = \frac{\pi^{n/2} i^{1-n} (p_3^2)^{n/2-\nu_1-\nu_2-\nu_3}}{\Gamma(\nu_1)\Gamma(\nu_2)\Gamma(\nu_3)\Gamma(n - \nu_1 - \nu_2 - \nu_3)} \frac{1}{(2\pi i)^2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} ds \ dt \ x^s \ y^t \\
\times \Gamma(-s)\Gamma(-t)\Gamma(n/2 - \nu_2 - \nu_3 - s)\Gamma(n/2 - \nu_1 - \nu_3 - t) \\
\times \Gamma(\nu_3 + s + t)\Gamma(\nu_1 + \nu_2 + \nu_3 - n/2 + s + t), \quad (2.5)
\]

where the integration contours separate the "right" and "left" series of poles of gamma functions in the integrand (see, e.g., [11]). It can be noted that an analogous representation for integrals corresponding to diagrams with arbitrary number of external lines has been presented in ref. [12].

Closing the \(s \) and \(t \) contours in (2.5) to the right yields [13]:

\[
J(\nu_1, \nu_2, \nu_3) = \frac{\pi^{n/2} i^{1-n} (p_3^2)^{n/2-\nu_1-\nu_2-\nu_3}}{\Gamma(\nu_1)\Gamma(\nu_2)\Gamma(\nu_3)\Gamma(n - \nu_1 - \nu_2 - \nu_3)} \\
\times \{ \Gamma(\nu_3)\Gamma(\nu_1 + \nu_2 + \nu_3 - n/2)\Gamma(n/2 - \nu_1 - \nu_3)\Gamma(n/2 - \nu_2 - \nu_3) \\
\times F_4(\nu_3, \nu_1 + \nu_2 + \nu_3 - n/2; \nu_2 + \nu_3 - n/2 + 1, \nu_1 + \nu_3 - n/2 + 1|x, y) \\
+ y^{n/2-\nu_1-\nu_3}\Gamma(\nu_2)\Gamma(n/2 - \nu_1)\Gamma(\nu_1 + \nu_3 - n/2)\Gamma(n/2 - \nu_2 - \nu_3) \\
\times F_4(\nu_2, n/2 - \nu_1; \nu_2 + \nu_3 - n/2 + 1, n/2 - \nu_1 - \nu_3 + 1|x, y) \\
+ x^{n/2-\nu_2-\nu_3}\Gamma(\nu_1)\Gamma(n/2 - \nu_2)\Gamma(n/2 - \nu_1 - \nu_3)\Gamma(\nu_2 + \nu_3 - n/2) \\
\times F_4(\nu_1, n/2 - \nu_2; n/2 - \nu_2 - \nu_3 + 1, \nu_1 + \nu_3 - n/2 + 1|x, y) \\
+ x^{n/2-\nu_2-\nu_3}y^{n/2-\nu_1-\nu_3} \\
\times \Gamma(n - \nu_1 - \nu_2 - \nu_3)\Gamma(n/2 - \nu_3)\Gamma(\nu_2 + \nu_3 - n/2)\Gamma(\nu_1 + \nu_3 - n/2) \\
\times F_4(n - \nu_1 - \nu_2 - \nu_3; n/2 - \nu_3; n/2 - \nu_2 - \nu_3 + 1, n/2 - \nu_1 - \nu_3 + 1|x, y) \},
\]

(2.6)

where

\[
F_4(a, b; c, d|x, y) = \sum_{j=0}^{\infty} \sum_{l=0}^{\infty} \frac{x^j \ y^l}{j! \ l!} \frac{(a)_{j+l} \ (b)_{j+l}}{(c)_j \ (d)_l}
\]

(2.7)

is the Appell’s hypergeometric function of two variables (see, e.g., [14],[11]), and \((a)_j \equiv \Gamma(a + j)/\Gamma(a)\) denotes the Pochhammer symbol. If \(\nu_3, \nu_2 \) or \(\nu_1 \) vanishes we
obtain, from (2.6), the results (2.2) while at \(\nu_1 + \nu_2 + \nu_3 = n \) we get the uniqueness condition (see, e.g., in [15]). Using the representation (2.5) we can also obtain results in terms of other dimensionless combinations of momenta.

Let us examine the important special case, \(\nu_1 = \nu_2 = \nu_3 = 1 \). Then we can consider the limit \(n \to 4 \ (\varepsilon \to 0) \), and we get

\[
J(1, 1, 1)_{|n=4} = \frac{i\pi^2}{p_3^3} \Phi(x, y)
\]

with

\[
\Phi(x, y) \equiv \left(\frac{\pi^2}{3} + \ln x \ln y \right) F_4 (1, 1; 1|x, y)
+ 2 \ln x (\partial_a F_4 + \partial_d F_4) + 2 \ln y (\partial_a F_4 + \partial_c F_4)
+ 2 \left(\partial_a^2 F_4 + \partial_a \partial_b F_4 + 2 \partial_a \partial_c F_4 + 2 \partial_a \partial_d F_4 + 2 \partial_c \partial_d F_4 \right).
\]

Here we introduced notations for the derivatives of the function (2.7) with respect to the parameters \(a, b, c \) and \(d \) (taking into account the symmetry of (2.7) with respect to \(a \) and \(b \)), for example:

\[
\partial_a F_4 \equiv \left(\frac{\partial}{\partial a} F_4 (a, b; c, d|x, y) \right)_{|a=b=c=d=1},
\]

etc. The coefficients of the parametric derivatives expansions in \(x \) and \(y \) can be easily obtained by differentiation of the coefficients of (2.7), and they contain \(\psi \)-functions and their derivatives. Thus, the formula (2.8) gives us the asymptotic expansion for small values of \(x \) and \(y \) (with due regard for \(\ln x, \ln y \) and \(\ln x \ln y \) terms).

To pass to the standard representation of the result for \(J(1, 1, 1) \) (see, e.g., [16]), it is convenient to use the reduction formulae for the function \(F_4 \) at special values of parameters (see, e.g., in the books [11] (p.102) or [17] (p.453)). Using these formulae and introducing the notation

\[
\lambda(x, y) \equiv \sqrt{(1 - x - y)^2 - 4xy},
\]

we find that

\[
F_4 (1, 1; 1|x, y) = \frac{1}{\lambda(x, y)},
\]

\[
\partial_a F_4 + \partial_c F_4 = \frac{1}{\lambda} \ln \left(\frac{1 + x - y - \lambda}{2x} \right),
\]

\[
\partial_a F_4 + \partial_d F_4 = \frac{1}{\lambda} \ln \left(\frac{1 - x + y - \lambda}{2y} \right),
\]

\[
\partial_a^2 F_4 + \partial_a \partial_b F_4 + 2 \partial_a \partial_c F_4 + 2 \partial_a \partial_d F_4 + 2 \partial_c \partial_d F_4
\]
\[\Phi(x, y) = 2 \ln \left(\frac{1 + x - y - \lambda}{2x} \right) \ln \left(\frac{1 - x + y - \lambda}{2y} \right) - 2 \text{Li}_2 \left(\frac{1 + x - y - \lambda}{2x} \right) - 2 \text{Li}_2 \left(\frac{1 - x + y - \lambda}{2y} \right) + \frac{\pi^2}{3}, \quad (2.11) \]

where \(\text{Li}_2(z) \) is the Euler’s dilogarithm. Taking into account these conditions we get

\[\Phi(x, y) = 2 \ln \left(\frac{1 + x - y - \lambda}{2x} \right) \ln \left(\frac{1 - x + y - \lambda}{2y} \right) - \ln x \ln y - 2 \text{Li}_2 \left(\frac{1 + x - y - \lambda}{2x} \right) - 2 \text{Li}_2 \left(\frac{1 - x + y - \lambda}{2y} \right) + \frac{\pi^2}{3}, \quad (2.11) \]

where \(\lambda = \lambda(x, y) \) is defined by the formula (2.10). The formula (2.11) gives us the standard representation for the integral (2.8). The results of such type are well known (see, e.g., [16]). It should be noted that the same result (2.11) can be obtained by using the Feynman parametric representation,

\[\Phi(x, y) = \frac{1}{\lambda} \left\{ \ln \left(\frac{1 + x - y - \lambda}{2x} \right) \ln \left(\frac{1 - x + y - \lambda}{2y} \right) - \ln x \ln y - \text{Li}_2 \left(\frac{1 + x - y - \lambda}{2x} \right) - \text{Li}_2 \left(\frac{1 - x + y - \lambda}{2y} \right) \right\} , \]

or by dispersion technique (see, e.g., [18]).

To our opinion, the representations of the type of (2.6) and (2.9) are more useful for studying the asymptotic behaviour of the results, while in numerical calculations it is more convenient to use the results of the type of (2.11).

3 Recurrence relations and the algorithm

Let us turn to examining integrals (2.1) with other positive powers of denominators \(\nu_1, \nu_2 \) and \(\nu_3 \). To do this, we could use either the general result (2.6) or parametric integral representations of the type of (2.12). However, these both ways are rather labour-consuming. In this section we shall consider the recursive algorithm of evaluating integrals with different powers of denominators which is based on the integration-by-parts technique [7]. Note that a similar procedure for the propagator-type axial-gauge integrals has been considered in ref. [19]. It can also be noted that in ref. [20] the technique [7] has been used to evaluate some two-loop three-point diagrams.

We use the property [7] that the dimensionally-regularized integrals with full divergence in the integrand vanish,

\[\int d^n k \frac{\partial}{\partial k_\mu} \left\{ \frac{(q_1 + k)^\mu_{\nu_1}}{((q_1 + k)^2)^{\nu_1}} \frac{(q_2 + k)^\mu_{\nu_2}}{((q_2 + k)^2)^{\nu_2}} \frac{(q_3 + k)^\mu_{\nu_3}}{((q_3 + k)^2)^{\nu_3}} \right\} = 0, \quad i = 1, 2, 3. \quad (3.1) \]
Hence we get the following relations for the integrals (2.1):
\[
\begin{align*}
\nu_2 p_3^2 J(v_1, v_2 + 1, v_3) + \nu_3 p_2^2 J(v_1, v_2, v_3 + 1) &= (2\nu_1 + \nu_2 + \nu_3 - n)J(v_1, v_2, v_3) \\
+ \nu_2 J(v_1 - 1, v_2 + 1, v_3) + \nu_3 J(v_1 - 1, v_2, v_3 + 1),
\end{align*}
\]
\[
\begin{align*}
\nu_3 p_2^2 J(v_1 + 1, v_2, v_3) + \nu_3 p_1^2 J(v_1, v_2, v_3 + 1) &= (\nu_1 + 2\nu_2 + \nu_3 - n)J(v_1, v_2, v_3) \\
+ \nu_1 J(v_1 + 1, v_2 - 1, v_3) + \nu_3 J(v_1, v_2 - 1, v_3 + 1),
\end{align*}
\]
\[
\begin{align*}
\nu_1 p_2^2 J(v_1 + 1, v_2, v_3) + \nu_1 p_3^2 J(v_1, v_2 + 1, v_3) &= (\nu_1 + \nu_2 + 2\nu_3 - n)J(v_1, v_2, v_3) \\
+ \nu_1 J(v_1 + 1, v_2, v_3 - 1) + \nu_2 J(v_1, v_2 + 1, v_3 - 1).
\end{align*}
\]
(3.2)

We have written the equations (3.2) in such a way that on the r.h.s.'s we have integrals with the sum of the indices \(\sigma = \nu_1 + \nu_2 + \nu_3\), while on the l.h.s.'s we have integrals with \(\sigma = \nu_1 + \nu_2 + \nu_3 + 1\). Thus, we can regard (3.2) as a system of simultaneous equations with respect to the integrals \(J(v_1 + 1, v_2, v_3), J(v_1, v_2 + 1, v_3)\) and \(J(v_1, v_2, v_3 + 1)\) with the determinant
\[
\Delta = \begin{vmatrix}
0 & \nu_2 p_3^2 & \nu_3 p_2^2 \\
\nu_1 p_3^2 & 0 & \nu_3 p_1^2 \\
\nu_1 p_2^2 & \nu_2 p_1^2 & 0
\end{vmatrix} = 2\nu_1 \nu_2 \nu_3 p_1^2 p_2^2 p_3^2. \tag{3.3}
\]

Solving this system we obtain, e.g., that
\[
J(v_1, v_2, v_3 + 1) = \frac{1}{2\nu_3 p_1^2 p_2^2} \left\{ \left((2\nu_1 + \nu_2 + \nu_3 - n)p_1^2 \\
+ (\nu_1 + 2\nu_2 + \nu_3 - n)p_2^2 - (\nu_1 + \nu_2 + 2\nu_3 - n)p_3^2 \right) J(v_1, v_2, v_3) \\
+ \nu_2 p_1^2 J(v_1 - 1, v_2 + 1, v_3) + \nu_3 p_1^2 J(v_1 - 1, v_2, v_3 + 1) \\
+ \nu_1 p_2^2 J(v_1 + 1, v_2 - 1, v_3) + \nu_3 p_2^2 J(v_1, v_2 - 1, v_3 + 1) \\
- \nu_1 p_3^2 J(v_1 + 1, v_2, v_3 - 1) - \nu_2 p_3^2 J(v_1, v_2 + 1, v_3 - 1) \right\}, \tag{3.4}
\]

and also analogous results for \(J(v_1 + 1, v_2, v_3)\) and \(J(v_1, v_2 + 1, v_3)\). Using these formulae we define three integrals on the plane \(\sigma = \nu_1 + \nu_2 + \nu_3 + 1\) through the integral \(J(v_1, v_2, v_3)\) and six contiguous integrals on the plane \(\sigma = \nu_1 + \nu_2 + \nu_3\). One can easily see that, applying consecutively these formulae an appropriate number of times, we can express the integral with any positive integer \(\nu_1, \nu_2, \nu_3\) in terms of \(J(1, 1, 1)\) and boundary integrals (2.2).

One can obviously imagine this process by use of the \((\nu_1, \nu_2, \nu_3)\) coordinate space, considering the planes \(\nu_1 + \nu_2 + \nu_3 = \sigma\), \(\sigma\) being a positive integer number. We are interested in the region where \(\nu_i \geq 0 \ (i = 1, 2, 3)\). The cases when at least one of \(\nu_i\) vanishes are trivial (see (2.2)). The first plane containing the integral with at least one \(\nu_i\) being positive corresponds to the case \(\sigma = 3\). The corresponding integral \(J(1, 1, 1)\) (at \(n = 4\)) was calculated in the previous section. The second plane (\(\sigma = 4\)) involves three integrals with positive \(\nu_i\) : \(J(1, 1, 2), J(1, 2, 1)\) and \(J(2, 1, 1)\). Using the relation (3.4) at \(\nu_1 = \nu_2 = \nu_3 = 1\) we get
\[
J(1, 1, 2) = \frac{1}{p_1^2 p_2^2} \left\{ \left(p_1^2 + p_2^2 - p_3^2 \right) \varepsilon J(1, 1, 1) \right\}.
\]
with $\varepsilon = (4 - n)/2$. It should be noted that the term $\varepsilon J(1,1,1)$ disappears as $\varepsilon \to 0$ from the formula (3.5) since the integral $J(1,1,1)$ is finite as $n \to 4$ (see (2.8), (2.9) and (2.11)). Thus, in the case $n \to 4$ $J(1,1,2)$ can be expressed through boundary propagator-type integrals (2.2) only. Using the expansion

$$(p^2)^{-\varepsilon} = 1 - \varepsilon \ln p^2 + \mathcal{O}(\varepsilon^2) \quad (3.6)$$

and the formula (2.3) we obtain (keeping the singular and finite as $\varepsilon \to 0$ terms only)

$$J(1,1,2) = A \frac{1}{p_1^2 p_2^2} \left\{ -\frac{1}{\varepsilon} + \ln p_1^2 + \ln p_2^2 - \ln p_3^2 \right\} \quad (3.7)$$

with

$$A = i^{1+2\varepsilon} \pi^{2-\varepsilon} \frac{\Gamma(1-\varepsilon)\Gamma(1+\varepsilon)}{\Gamma(1-2\varepsilon)} = i^{1+2\varepsilon} \pi^{2-\varepsilon} \Gamma(1+\varepsilon) + \mathcal{O}(\varepsilon^3) \quad (3.8)$$

(this is a common factor for all integrals). Note that the $1/\varepsilon$ pole in (3.7) has infrared origin, due to the second power of massless denominator. It is understood in the formulae (3.6) and (3.7) that the arguments of logarithms (p_i^2) are made dimensionless either by massive parameter of dimensional regularization [8] or by one of p_i^2 (for example, by p_3^2). In this case we find (see (2.4))

$$J(1,1,2) = A(p_3^2)^{-2-\varepsilon} \frac{1}{x \ y} \left\{ -\frac{1}{\varepsilon} + \ln x + \ln y \right\}. \quad (3.9)$$

The same result (3.9) can be also obtained from the general formula (2.6) (however, this requires a considerably more cumbersome calculation). In this section we shall prefer the form (3.7) rather than (3.9) to keep explicit symmetry of the results.

The expressions for remaining integrals, $J(1,2,1)$ and $J(2,1,1)$, can be obtained from (3.7) by using the symmetry properties:

$$J(1,2,1) = A \frac{1}{p_1^2 p_3^2} \left\{ -\frac{1}{\varepsilon} + \ln p_1^2 - \ln p_2^2 + \ln p_3^2 \right\}, \quad (3.10)$$

$$J(2,1,1) = A \frac{1}{p_2^2 p_3^2} \left\{ -\frac{1}{\varepsilon} - \ln p_1^2 + \ln p_2^2 + \ln p_3^2 \right\}. \quad (3.11)$$

Note that the same results (3.10) and (3.11) can also be obtained by using other recurrence formulae of the type of (3.4). Thus, all the integrals with $\sigma = \nu_1 + \nu_2 + \nu_3 = 4$ can be expressed as $\varepsilon \to 0$ in terms of propagator-type integrals (2.2) and do not contain complicated functions of the type of (2.11).

Moreover, from (3.4) it is clear that, calculating any other integrals with $\sigma > 4$, we always can express them through integrals with $\sigma = 4$ and boundary integrals (2.2). Note that recurrence relations (3.4) cannot give us the coefficients which are singular in ε. Therefore, the integral $J(1,1,1)$ will always enter with the factor ε, and it will disappear from the formulae as $\varepsilon \to 0$.

Thus, we have proved that for any integer values of ν_1, ν_2, ν_3 (with the exception of the case $\nu_1 = \nu_2 = \nu_3 = 1$) the integrals $J(\nu_1, \nu_2, \nu_3)$ (2.1) can be expressed as $n \to 4$
\[(\varepsilon \to 0)\] in terms of linear combinations of boundary integrals (2.2) with regular \((\varepsilon)\) coefficients. Therefore, all such integrals contain powers and logarithms of external momenta squared only. The only "complicated" integral \(J(1,1,1)\) is defined by the formulae (2.8),(2.9),(2.11). It can be noted that analogous situation has occurred earlier, when evaluating axial-gauge propagator-type integrals (see, e.g., [21]).

Using recurrence relations (3.4) can be easily algorithmized. To do this, we have used the REDUCE system [22]. The results for some other integrals are presented in Appendix.

4 Conclusion

Thus, using massless triangle diagrams as an example, in the present paper we examined some problems of evaluating vertex-type Feynman integrals. In Section 2 the general results (2.5) and (2.6) for integrals (2.1) were considered, and the expressions (2.8), (2.9) and (2.11) for the integral \(J(1,1,1)\) (at \(n = 4\)) were presented. In Section 3 we examined a recursive method of evaluating integrals (2.1) with other positive powers of denominators \(\nu_i\) which was based on the integration-by-parts technique [7].

It was proved that as \(n \to 4\) the integrals with any positive values of \(\nu_i\) could be reduced to two-point integrals (2.2), with the exception of the case \(\nu_1 = \nu_2 = \nu_3 = 1\). The main recursion formula (3.4) is true for any \(n\); therefore, the presented algorithm can be applied to integrals with any values of the space-time dimension.

It should be noted that the presented technique can be applied also to vertex-type integrals with larger number of external lines \(N (N > 3)\). In this case we obtain a system of \(N\) equations (instead of (3.2)).

Finally, we note that the examined method can also be used to evaluate massive vertex-type Feynman integrals. For example, if we substitute in the integral (2.1) the massless denominators \((q_i + k)^2\) by the massive ones, \(((q_i + k)^2 - m_i^2)\), then the r.h.s.'s of the equations (3.2) will not change while the determinant (3.3) will be of the following form:

\[
\Delta = \begin{vmatrix}
-2\nu_1 m_i^2 & \nu_2(p_2^2 - m_1^2 - m_2^2) & \nu_3(p_2^2 - m_1^2 - m_3^2) \\
\nu_1(p_2^2 - m_1^2 - m_2^2) & -2\nu_2 m_2^2 & \nu_3(p_1^2 - m_2^2 - m_3^2) \\
\nu_1(p_2^2 - m_1^2 - m_3^2) & \nu_2(p_1^2 - m_2^2 - m_3^2) & -2\nu_3 m_3^2
\end{vmatrix}.
\] (4.1)

As a result, the solutions of the type of (3.4) become more cumbersome. Nevertheless, the main features of the algorithm are the same also for the massive case.

Acknowledgements. I would like to thank Instituut-Lorentz for the hospitality. I enjoyed useful discussions with Drs. F.A.Berends, W.L. van Neerven and J.B.Tausk. I also wish to thank Dr. E.E.Boos for fruitful discussions, and Dr. A.I.Alekseev for making me familiar with the paper [19].
Appendix

Here we present the results for some other integrals (2.1) obtained by using the recurrence relations (3.4):

\[
J(1, 2, 2) = A \frac{1}{(p_1^2)^2 p_2^2 p_3^2} \left\{ -(p_1^2 + p_2^2) \frac{1}{\varepsilon} + p_1^2 - p_2^2 - p_3^2 \\
+ (p_2^2 + p_3^2) \ln p_1^2 - (p_2^2 - p_3^2)(\ln p_2^2 - \ln p_3^2) \right\}, \quad (A.1)
\]

\[
J(1, 1, 3) = A \frac{1}{2 (p_1^2)^2 (p_2^2)^2} \left\{ -(p_1^2 + p_2^2 - p_3^2) \frac{1}{\varepsilon} - 3p_1^2 - 3p_2^2 - p_3^2 \\
+ (p_1^2 + p_2^2 - p_3^2)(\ln p_1^2 + \ln p_2^2 - \ln p_3^2) \right\}, \quad (A.2)
\]

\[
J(2, 2, 2) = A \frac{1}{(p_1^2)^2 (p_2^2)^2 (p_3^2)^2} \left\{ -\left((p_1^2)^2 + (p_2^2)^2 + (p_3^2)^2\right) \frac{1}{\varepsilon} \\
-2 \left((p_1^2)^2 + (p_2^2)^2 + (p_3^2)^2\right) + 2 \left(p_1^2 p_2^2 + p_1^2 p_3^2 + p_2^2 p_3^2\right) \\
+ \left(- (p_1^2)^2 + (p_2^2)^2 + (p_3^2)^2\right) \ln p_1^2 + \left((p_1^2)^2 - (p_2^2)^2 + (p_3^2)^2\right) \ln p_2^2 \\
+ \left((p_1^2)^2 + (p_2^2)^2 - (p_3^2)^2\right) \ln p_3^2 \right\}, \quad (A.3)
\]

where \(n = 4 - 2\varepsilon \), and the factor \(A \) is defined by the formula (3.8). Here we omitted results which can be obtained from (A.1)-(A.3) by using the symmetry of the integrals (2.1) with respect to permutations of \((\nu_1, p_1), (\nu_2, p_2)\) and \((\nu_3, p_3)\).

References

